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ABSTRACT 

The lethal volume of a continuous rod warhead is defined as 

that volume in which a target reference point must be located at 

burst if the target is to be subjected to a lethal cut from the 

rod. The lethal volume is a function of the characteristics of 

the target, warhead, and intercept dynamics. 

A continuous rod warhead subjects a target to lethal damage 

by ejecting a loop of metal laterally to cut a structural member 

in the target. As the loop is ejected it expands in a circle 

until the radius of breakage is reached. 

The target is assumed to be a single, linear, rigid, and 

non-rotating structural member. The lethal volume is obtained 

for this target by examining the relative motion of the target 

and of the rod with respect to the missile carrying the warhead. 

Under the assumption of constant rod velocity, the lethal volume 

is shown to be composed of linear segments joining two identical 

right elliptic cones. 

Expressions for the size and probability content of the lethal 

volume are then obtained for the constant rod velocity case. A 

numerical scheme is discussed with which the probability content 

of the lethal volume can be evaluated. 

Parameter variation studies, which can be performed with the 

lethal volume oodel, are next discussed. As examples, the varia- 

tion in the size and probability content of the lethal volume is 

computed for several combinations of the input parameters. 

The thesis is closed with two proposed schemes for improving 

the model.  First, a means of improving the target model such that 



it bears a closer resemblance to an airplane is discussed. Final 

ly, a means of accounting for variable rod velocity is given. 



CHAPTER 1 

INTRODUCTION 

A.  LETHAL VOLUMES 

The lethal volume ol a warhead is that volume in which a 

target reference point must be located at the time of burst if it 

is to be subjected to some lethal effect from the warhead.  Thus a 

necessary and sufficient condition for target kill is that the 

reference point be located in the lethal volume at the time of burst 

The location of the lethal volume is usually considered relative to 

the center of the warhc d, but is occasionally considered relative 

to some other point such as a point on the target.  Here, the former 

procedure will be followed. 

As an elementary example of a lethal volume, consider a warhead 

which destroys all point targets within a distance R of the center 

of the warhead at the time of burst. The lethal volume would then 

be a sphere of radius R centered about the warhead. The distance 

R is called the lethal r«Jius of the warhead. The lethal radius is 

primarily a function of the warhead and target characteristics but 

Is also influenced by environmental factors such as atmospheric 

density. 

The usefulness of the concept of a lethal volume lies largely 

in its relation to the kill probability of an operable missile. A 

missile is said to be operable unless it fails because of weapon 

system malfunctions. The kill probability of an operable missile, 

P, Is defined as the probability that, under a given set of target, 

missile, warhead and intercept conditions, an operable missile will 

result in a target kill. 
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If f(x,y,z,) is the probability density function describing 

the location of the target reference point relative to the warhead 

at the time of burst, then the kill probability of an operable 

missile is given by, 

P " J J J ^(x,y,z)dxdydz   , 

V 
where V is the lethal volume.  If, 

(2n)?* a3 
describes the distribution of point targets about the center of 

the warhead for the spherical lethal volume considered earlier, 

then 

P . J J J   *   ••** U +* *Z W   . 
y % (2TT)/

2
 a3 /• 2+ 

2 **   Ra> 
If P(v < R)denotes the probability that v<H,then P * P(* \        < —•) 

This is simply P (x* < R2/a2>) 

where x has a chi-square distribution with three degrees of 
3 

freedom.1 This probability can be found from a table of the 

chi-square cumulative distribution. 

In practice, it is rarely possible to evaluate P in terms of 

tabulated functions. For this reason, numerical integration of the 

integral expression for P must normally be used. 

Once the relationship between the lethal volume and the kill 

probability has been established, system parameter tradeoffs can 

be made. To perform tradeoffs, system parameters are related to 

the lethal radius of the warhead and th** guidance accuracy of the 

*H. W. Lilliefors, "A Hand-Computation Determination of Kill 
probability for Weapons Having Spherical Lethal Volume", OPERATIONS 
RESEARCH JOURNAL, Vol. 5, No. 3, June 1957, pp. 416-421. 
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missile.  These parameters can be varied and their effect on kill 

probability observed.  If the model is sensitive to environmental 

factors, their effects on kill probability can also be investigated. 

On the other side, studying the effects of hardening the target or 

forcing the burst to occur closer to the target is a problem fre- 

quently investigated.  In all cases significant changes in the kill 

probability are sought for a minimum of cost. 

In addition to the kill probability, another measure of warhead 

effectiveness which is often used is the size of the lethal volume. 

Since the kill probability is obtained by integrating over the 

lethal volume, the variation of the size of the lethal volume can 

be used as a crude measure of the variation in kill probability. 

xhe  size of the lethal volume as a measure of effectiveness 

is useful since it is easier and cheaper to compute than the 

probability of kill.  For instance, the IBM 7090 computer program 

for the lethal volume of a continuous rod warhead based on this 

thesis computes the size of the volume at less than one-fourth 

2 
the cost of the calculation of kill probability.  For this reason, 

the size of the lethal volume is preferred as a measure of warhead 

effectiveness when the size of the volume adequately reflects the 

parameters under study. 

B.  CONTINUOUS ROD WARHEADS 

To form a continuous rod warhead, a single long continuous 

metal rod is folded onto the warhead over a high explosive charge. 

2 
Vitro Laboratories Program R-16, Silver Spring, Maryland, 

1964. 
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Upon detonation the rod expands in a circle normal to and centered 

at the missile axis, as shown in figure JA. The circle of metal 

expands as a continuous rod until the circumference of the circle 

is approximately equal to the length of the unfolded rod. Then 

the rod breaks randomly into discrete lengths.  The radius of the 
i 

circle of metal at the time of breakup is called the maximum opening 

radius of the rod and will be denoted by R^. 

The speed, thickness, and mass of the rod are such that if the 

rod strikes a structural member of an aircraft the member will be 

severed.  Such damage will usually cause flight failure unless the 

member is cut on an extremity such as a wing tip.  After the rod 

reaches its maximum opening radius, the effectiveness of the rod 

falls off rapidly and can be ignored in kill probability estimates. 

(See figure 13). 

The lethal volume of a continuous rod warhead is then defined 

as that volume in which the target reference point must be located 

at burst if the target is to be lethally cut by the rod before the 

3 
rod reaches its maximum opening radius R^. 

C.  PROBLEM STATEMENT 

The major problem addressed in this thesis was to mathematically 

describe the set of locations of a target reference point relative 

to the warhead at the time of warhead detonation, such that the 

subsequent motion of the target and the rod would result in the 

rod cutting the target.  This set was defined as the lethal volume 

of a continuous rod warhead. 

^The contents of the section were paraphrased from M.C.Waddel, 
Surface-To-Air Guided Missile Systems, Applied Physics Laboratory 
TG 396, March 196I,   pp. 37-38. 
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Since a necessary and sufficient condition for the target to 

be cut by the rod (target kill) is that the reference point be in 

the lethal volume at detonation, the probability of kill is the 

probability that the reference point is in the lethal volume at 

the time of warhead burst. A subsequent problem, then, was to 

obtain the probability content of the lethal volume and the 

variation in this probability content with model inputs. 

D. IMPORTANCE OF STUDY 

To date there has been very little effort devoted to an 

analytical description of the lethal volume of a continuous rod 

warhead. Nearly all effort in this area has been devoted to 

large scale simulations in which specific targets, missiles, and 

warheads are "flown" against each other under a given set of 

intercept or end game conditions. Using Monte Carlo techniques, 

a specific end game is run repeatedly until a probability of kill 

is obtained. The simulation technique has two major disadvantages. 

First, it is inherently expensive. Secondly, it fails to give the 

analyst an adequate "feel" for the relative importance of the 

variables under study. Because of the tremendous costs associated 

with the simulation approach, tradeoff studies among the inputs 

must be limited in scope. 

On the other end of the spectrum of the tools that exist for 

the analysis of continuous rod warheads, are some elementary 

analytical models. Those models are accurate only for the simplest 

intercept geometries such as  those in which the velocity vectors 

of both the target and the missile are along a straight line.** 

4Ibid, pp. 51-53. 
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The major disadvantage of these models is their inscnsitivity to 

many of the parameters which are known to significantly affect 

the kill probability associated with a given end game. 

The lethal volume model developed here was designed to 

bridge the gap between the simulation technique and simplified 

model; i.e., the lethal volume was intended to be sensitive to 

many of the variables which the simplified model is not and at 

the same time be substantially cheaper to use than the simulation 

technique. Because of the large decrease in costs, tradeoff 

studies performed with the lethal volume model can be much more 

complete than is currently possible with the simulation technique. 

For this reason, the lethal volume model is believed to be a 

significant new tool for the analysis of continuous rod warhead 

problems. 

E. ORGANIZATION OF THESIS 

Chapter II of the thesis contains the derivation of the 

lethal volume of a continuous rod /arhead against a single, linear, 

non-rotating, and rigid line segment. The line segment is assumed 

to represent the fuselage or wing of an aircraft. The lethal 

volume is obtained for this target by examining the relative 

motion of the target and the rod with respect to the missile 

carrying the warhead. Chapter II is closed with examples of the 

shape of the lethal volume as a function of the relative location 

of the target and the missile carrying the continuous rod warhead 

at burst. 

Chapter III contains expressions for the size and probability 

content of the lethal volume.  A numerical scheme for the evalua- 
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tion of the expression of the probability content of the lethal 

volume is discussed and illustrated. 

Chapter IV is devoted to an examination of the uses of the 

expressions for the size and probability content of the lethal 

volume derived in Chapter III. These uses are concerned with 

the variation in the size and probability content with the 

characteristics of the warhead, the missile carrying the warhead, 

and the target. A sample study concludes Chapter IV. 

Chapter V is devoted to means of improving the warhead and 

target models used in the derivation.  Particular attention is 

given to improving the target model so that is bears a closer 

resemblance to an aircraft. 



CHAPTER II 

DERIVATION 

A.  COORDINATE SYSTEMS AND DEFINITIONS 

In this section two coordinate systems will be defined.  One 

system will travel with the missile; therefore, the rod will remain 

in a plane in this coordinate system.  Because of this fact the 

equations for the lethal volume are greatly simplified in this 

coordinate system. A second coordinate system will be defined 

such that it has the same orientation as the first but will be 

stationary. The second system will then be used to establish the 

motion between a rigid structural member (target) and the missile. 

Let M be the point at the center of the warhead. A right- 

handed orthogonal coordinate system with its origin at M will now 

be established. First the x-ax.ls is chosen such that it lies along 

the axis of the missile. The z-ixic is then chosen such that it 

is perpendicular to the x-axis and such that the x-z axes lie in 

the vertical plane, with positive z  "above" the origin. The y-axis 

is chosen to complete a right-handed system, (see Figure 2). Let 

r, J", and K" be unit vectors directed along the positive x, y, and 

z axes respectively. 

Since this coordinate system moves with the missile, the rod 

will move in the y-z plane« Furthermore, since the rod expands 

in a circle, the path of the rod is described by, 

E - (R sin e)J • (R cos 8)k* 
where, 

R is the radius of the circle, 

6 is the angle between R and K". 
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Note that R 5 RL' tne max*mum opening radius. 

Let G be the origin of a second coordinate system, having 

the same orientation as the above system but fixed relative to 

the ground. This coordinate system will be used only to establish 

the relative motion between M and the target. 

Now consider a rigid linear structural member representing a 

major component of an aircraft such as the fuselage or a wing. 

Define B and C as the end points of the largest segment on the 

member such that a cut of the segment will be lethal to the member. 

Define BUT as the vector, having length equal to the distance 

from B to C and having the direction from B to C. Let the 

direction cosines of BC be * , L  , and 4 ,  |Eü! will be referred 
l  a'    3 

to as the effective length of the member. 

Let A be a point on the member between B and C. The velocity 

of A relative to M will now be established. Referring to figure 2, 

the vector MA is seen to be given by: 

HE - GA" - CH. 

Differentiating both sides with respect to time, t, gives 

d MÄ - d GÄ - d CM 
dt    dt    dt 

Defining ••i.  as the velocity of A relative to M, denoted 

'kM ' 8ives 

Under the assumption that there is no rotation of the member 

during the period of interest, the velocity of all points of the 

member will be equal to VTTj • This assumption is adequate 

because of the extremely short time between warhead burst and the 
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time the rod reaches its maximum opening radius R,.  Denoting this 

common velocity by 7. gives 

Let the direction cosines of V. tn    be m , m , and m and the 
A/a     18      3 

absolute value of V. /„ be I V./„ |  . In addition let the direction 

cosines of Vu/_ be n , n , and n and let the absolute value of 
n/a     id      3 

H/o be ' VÖ' •   Then 

and 

A/0 - I Vb U, r + I VA/G K J + ' Vo U» *   ' 
Substituting these values into equation (1) 

or 

where, 

Y. - V I • V J • V 1c 
A   i     j  v   i 

v, -135^-1551% (3) 
v,-'Vo,B

8-
,Vo,n» (w 

B.  PARAMETRIC EQUATION OF THE LETHAL VOLUME 

All positions, relative to M, at which the point B can be 

located at burst and the member still be cut by the rod between 

B and C will now be determined. Hie location of the point B will 

be defined such that any point of the member will be cut by the rod 
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at a radius R and angle 9 . The selection of the point B as the 

target reference point is only for convenience since any target 

reference point would suffice. 

The time for the rod to travel a distance R is given by 

t-R/VR 

where, 

VR is the average velocity of rod to the distance R.  If A is 

an arbitrary point on the member, the distance, with respect to M, 

that A travels during this time is I 37 I where 

ytf»   • 
Referring to figure 3, R is seen to be given by 

If - 1(A) 4 c£ «• IS* 

where, B(A) is the set of coordinates of the reference point B (at 

the time of burst) such that the subsequent motion of the member 

and the rod will result in the rod being cut at the point A. 

—        — —  —        BT 
Since BA lies along BC, BA «XBC, where X • — 

BC 
and G< X < 1. Substituting and solving for B(A) gives 

B(A) - R - dj[ - XBC (5) 

when X • 0# 

1(B) - I - 3^ 

and when X - l# 

E(C) - B - cf" - IB  . 

Therefore, 

B(C) - B(B) - BC (6) 

F(A) - B(B) - XB5 

and B(A)  - B(B) -  X[B(B)  - B(C)] (7) 
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Two important observations concerning the volume generated by 

B(A) can be made from equations (6) and (7). Equation (7) shows 

that the volume generated by B(/.) is composed of linear segments 

joining the surfaces generated by B(B) and B(C).  Equation (6) shows 

that the surface generated by B(C) is identical to that generated 

by B(ß) but is displaced by the vector -BC. Hence, describing the 

lethal volume generated by B(A) is essentially reduced to describing 

the surface generated by B(B); i.e., the surface associated with cuts 

of the point B. 

Substituting for R,d~ , and BC in equation (7) gives, 
A 

1(A) - [(V) ^  - X|15 I A%y * [H COS 9 • (|-) V^ - X | BC | tj$ 

• [R sin e + (^) Vt  - X'ICI is> - [xA, yA, .J  . (3) 

Equation (8) is the parametric equation of the lethal volume. 

When evaluated for all R, 9, andXsuch that 0 < R < R., 0 < 6 < 2TT, 

and 0 < X < 1  every point at viiich the reference B can be 

located at burst and the target be cut between B and C is generated. 

The volume generated by B(A) will be denoted V. 

D. ELIMINATION OF PARAMETERS 

Although equation (8) can be used to generate the lethal 

volume V, the elimination of the parameters R end 9 will lead to 

a more efficient computation. Since no equation exists for reliably 

expressing Y0 as a function of Ra a completely closed form solution A 

is Impossible to obtain. However, a closed form solution can be 

obtained for any given R. In addition, under the assumption that 

V is constant, a closed form solution for the entire volume will 
it 
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be obtained. 

As pointed out in the preceding section, the problem of 

describing V is essentially equivalent to that of describing 

the surface generated by B(B). To find B(B), X = 0 is substituted 

in equation (8) giving, 

*<B> - [*B» *» «d • 0$ \T + [R cos e + Gjpv, i 

or 

<&'• 
*B - \r) v- (9k) 

yB - R cos 6 • Q~) Vy (9B) 

*B « R sin 9 • (V) V (9C) 

Eliminating 0 from equations(9B) and (9C) gives, 
2V 2V R2   ,* ^v 

But from equation (9A)  is obtained, 

Substituting gives, 

2V 2V 

• "i " y- VB - V" XBSB " ° (10A) 
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B(B) 

H 

V 

V 
t 

V" 

V 

-r 
X 

V 
t 

X 

[B(B)] 10B) 

where, 

H - (V8 4 V2 - Vt)/f 
f s K       * 

doc) 

B(B)- [xB, yB, zfc] 

CB(B)]    is the transpose of 3(B) 

If M denotes  the matrix of coefficients in equation (10B), 

then 

S(B) - CB(B)3 M [B(B)T (ID 

Where S(B) *= 0 is the equation of the surface generated by B(B) ; 

i.e., the equation whose locus is the surface associated with cuts 

of the point B. 

C. REDUCTION TO NORMAL FORM 

In this section the normal form of S(B) will be obtained. 

First, the special case when both V and V are zero, will be treated 

Then the canonical form for the case when V and V are not both zero 
«    r 

will be obtained. 

If an orthogonal matrix Q can be found such that, 

QMQT « D 

where D is a diagonal matrix, then the substitution 

B(B) « B'(B) Q 

(12) 

(12A) 

«srjr 
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can be made  in equation  (11),  giving, 

S(B) - B'(B)QM(B'(B)Q)T- B'(B);KQT[B'(B)]T - B'(B)D[B'(B)]T 

This will then be the required normal form of S(B) in terms of 

EF (B) « [x^, yR, Zgl  The relationship between B(B) and ^'(B)  can 

be obtained from equation (12A\ 

First, consider the special case when both V and V are zero. 
7 * 

Then 

M 

4 

0 

0 

0 

1 

0 

and, 

S(B) ZB * yB " V* 
2 8 

From equation (9C) the maximum value of zQ is seen to be R . 

Dividing through by R gives 

z 

? 
LB 2 +12., -.. 

R8 sW   3 
(13) 

<•*•> 

as normalized equation of the surface. For a given R, V is a 
R 

constant and the surface associated with rits  of the point B is 

teen to be a right circular cone. If V_is assumed to be constant 
• R 

for all R, then the cone for R » R_will contain the cones for all 

other values of R. Under this assumption, equation (13) takes the 

form, 

o  . (1U) 
'B . 'B 

* h <£> 
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Next consider the case when neither V nor V is zero.  Following 
y    « 

the characteristic root - characteristic vector scheme for deriving 

Q, the characteristic roots were found to be, 

H • 1 + 

 V* 

(H « l)a • h -I 
i> 0 

I (H + l)2 • i| -S 

>.-H4l-V     2 -<o 

and p,"1 

The characteristic vectors were  found to be 

8        1 S3 

S     L1' TIT IT ' T=T V~J     > 
Is Is 

and 

Therefore 

% - [°> i» V-]    • 

VIM 
VI ^ i 

Substituting Q in equation (12) gives 

D 

Hence S(B)  has  form 

POO 
l 

0      P    0 
8 

0     0   1 

S(B) - i/ • ex/ .. da y/ 

(15A) 

(15B) 

(ISC) 

(15D) 

(15S) 

(15F) 

B B B 

where, c « Jo~ and d » «/-o 
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The transformation equations are given by 

B'(B) « B(B)QT 

or 

4 • [*B * V Qzr) yB • (JO G=r) «J /' \' <16A> 

*B - h+ V Gär) yB • (JO Gär) »J /' % ' <i63> 
t 

V 
8
B " I/B " if ZB1 /! % I   • (l6c> 

1 

Substituting from equations (9B) and (9C) into (16C) gives 

*   r v > R+ v* 
B • (R cos e - -jL R sin y y '     y zB • (^R cos 9 .f R sin ejJ -i—^   . (17) 

v3 
I 

for a given R, the maximum value of «R is now desired in order to 

establish the general form of S(B) . Differentiating with respect 

to 6 and equating to zero gives, 
-V 

tan 9 » -w7- 
vi 

Substituting into equation (17) yields 
R T R R V 

Max (v + r)    (v + r) 'B' nax n 
a   f'   ' i   y 

Therefore the normalized form of the surface associated with cuts 

of the point B is 
a    a   a 

*B    *R    yR 

R  (|)  (J) 
Note that when either V or V but not both is zero the vector q 

y   « * 

must be modified. When V is zero, then 
y 

and when 7-0, 

i 

*B * yB (19A) 

then zB - Xg (19B) 
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In both cases (zn )j.iax again equals R.  However, equatie-. (18) still 
D 

holds since the formulas for c and d remain unchanged.  Tf both Vy 

and Vz are zero the characteristic values change and equation (13) 

must be used,  /gain, the surface associated with cuts cf the 

point B Is seen to be a right cone or more specifically in this 

case a right elliptic cone. As before, if Vg is assu—.=.-: to be 

constant, then the cone for R = R^ will contain all other cones 

and equation (18) becomes    22a 

H' QkJöJ 
c   a 

A definitive statement abcut the lethal volume V csn now be 

made.  Earlier the lethal volume was shown to be composed of all 

linear segments of length | BC| joining two identical surfaces 

generated by B(B) and B(C) where 1 BC! was the effective length of 

the member. These facts in conjunction with the foregoing state- 

ments about the surface generated by B(B), gives the following 

theorem: 

Under the assumption of a constant non-zero rod 

velocity (V_/0) and a non-zero closing velocity 
K 

projected on the missile axis (V / 0), the lethal 

volume of a continuous rod warhead directed against 

e,  linear, rigid, and non-rotating structural merger, 

is composed of linear segments connecting the surfaces 

of two right elliptic cones.  Furthermore, these cones 

are identical in size and orientation. They are displaced 

from each other by a vector whose length is equal to 

the effective length of the member and whose direction is 
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given by the orientation of the member with respect to 

the axis of the missile carrying the warhead. 

EXAMPLES 

Before proceeding further with the derivation three simple 

examples will be given. The conditions associated with the examples 

will be referred to as end game conditions.  End Game I is the 

simple case when the velocity vector of the target and the target 

velocity vector of the fissile both lie along the same line. In 

End Game II the member is inclined at 45° to the axis of the 

missile. In End Game III the member is inclined at 90* to the 

axis of the missile. Table I defines the three end games in detail. 

The examples were treated parametrically except when complexity 

dictated otherwise. 

TABLE I. Definition of End Games 

Model Input^   End Gazse I     End Game II       End Game III.. 

h h h 
VR VR (constant) lOO fps UOO fps 

I BC I |BCl 1 BC | iBCl 

WBa -If 0, 0 =4p    0, =£~ 0,0,-1 

V V ns x» °* ° i» o» o i» o, o 

I \^! I V^"« 300 fps 300 fps 

' \/Q ' ' ^H/G' 20° fp3 20° fP8 

*These terms are defined on pp.11-13 
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In End Game I both Vy and Vz are zero and equation (14) holds, 

consequently, the surface associated with cuts of the point B is a 
IV IlL 

right circular cone of height  f  s 
VR 

Figure 4 shows the lethal volume for this end game. 

In End Game II the member is inclined at 45° to the axis of 

the missile. The velocity vector of the member and the velocity 

vector of the missile are aligned with the member and the axis of 

the missile, respectively. From equations (2), (3), and (4) are 

obtained, 

V « -1*12 fps, V - 0, and V • -212 fps. 

From equations (IOC), (15A), and (15B) are obtained, 

H - -0.678, p « 1.15 and o * -0.82 

Therefore S(B) has the form, 
at z 

S(B).V H '* 
R^      (O.^Rj/      (1.1 Rj/ 

The translation equations (16A), (16B), and (19A) give, 

x^ » [xg - 3Jll «ßl / I <^" I   * 

7g - txg • 0.283 iB3 /! qj I  , 

«B-yB 
t 

B 
Using these axes the lethal volume was sketched in figure 5. 

In End Game III the member is included at 90' to the axis of 

the missile. The velocity vectors at both the member and the 

missile are aligned with their respective axes. In this case, 

Y - 200 fps, V • 0, and V • -300 fps 
1 ft 
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In this case, H « -1.75, Px   « 1.66, and 0^ » -2j.il«  Hence, S(B) has 

the form,     a      a a 

S(B) - -L 4 —25 — — - o  . 
R*   (.776 R^)3 (.6UhRj)2 

The translation equations for this end game are, 

4 - C*B -2«* »si / m  , 
*B " [*B + 0M ZB)/\%) 

and zB - yB   . 

Using these axes the lethal volume was sketched in figure 6. 

Notice the marked difference in the characteristics of the 

lethal volume in End Game III as compared to either End Game I or 

End Game II. Figure 7 shows the transition in five stages.  The 

figures show End Game I for various values of / • cos 9. 

First consider the cylinder formed by the lines joining the 

bases of the two cones in Case 1. As the angle 9 increases, the 

apex of the cone contained in the cylinder (Case 2) approaches the 

side of the cylinder uncil the angle 9 equals the semi-cone angle a 

(Case 3) . As 9 becomes greater than or the cone breaks through the 

side of the cylinder (Case 4) . At 9 « 90* the cone becomes complete 

ly outside the cylinder. (Case 5). 

As 9 becomes still larger the cone originally outside the 

cylinder starts to recede into the cylinder. At 9« 180° the 

volume Is exactly as it appears in Case 1, except the cone outside 

the cylinder at 9 c 0° is now inside the cylinder and vice-versa. 

The condition for a cone to be completely contained in the 

cylinder when V and V are both zero, is 

er > 9 
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Hence 
tan (    R V cos -1 

V 

29 

(20A) 

or 
BC « 1| m t   >  1V, ! 

x  - 
(20B) 

BC j^X 
Is required condition. 

Following a similar line of reasoning gives the condition 

when either V or V is not zero as 
7     I 

K 'S 
\%\  13C| 

rz— (20C) 

Fl mm 



CHAPTER III 

MEASURES OF EFFECTIVENESS 

A.  INTRODUCTION 

In this section expressions for the two measures of 

effectiveness discussed in the introduction, the size and 

probability content of the level volume, will be developed. 

The scope of this chapter will be limited by assuming a constant 

rod velocity and by considering the target to be a single linear 

member. In addition the results of this chapter are applicable 

only when equations (203) or (20C) hold; i.e., only when one of 

the cones is completely contained in the cylinder. The latter 

restriction is not a serious limitation since the vast majority 

of end-games satisfy these inequalities. 

B. THE SIZE OF THE LETHAL VOLUME 

From a computational standpoint, the size of the lethal 

volume is a very efficient measure of effectiveness. In this 

section, expressions will be given with which the size of the 

lethal volume can be evaluated when both V and V are zero and 
ft 

when either V or V is not zero. 
f • 

Consider the lethal volume in figure 4. The lethal volume 

is composed of segments of length I BC| joining the surfaces of 

the two cones. The volume contained in one of the cones is seen 

to be interior to the lethal volume while the volume contained in 

the other cone is exterior to the lethal volume. Since these cones 

are identical in size, the volume contained in each is the same. 

The size of the lethal volume can, therefore, be gotten by finding 

the volume of the skewed elliptic cylinder obtained by joining the 
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bases of the two cones. A similar condition is seen to exist 

whenever one of the cones is completely contained in the cylinder; 

i.e., whenever equation (20B) or (20C) holds. 

The volume of the skewed elliptic cylinder is given by, 

V » TT ab 11 11 € | 
where, 

a and b are the semimajor and semiminor axes of the 

ellipse, L is the vector connecting the center of the 

ellipses at the ends of the cylinder,  t is the cosine 

of the angle between L and the vector perpendicular to 

the surface of the ellipse. This fact will now be 

related to the size of the lethal volume. 

Let V denote the lethal volume and | V I denote the size of this 

lethal volume. When Vy »= V2 « 0, BC corresponds to the vector L, 

i corresponds to €, and a » b « RL« Hence, 

subject to, y 
|*-|   «n|BC|IV4.a       » (a) 

» -T3    ^ 
When V„ and V. are not both zero,  the cones revolve about the 

y   » 

y'axis. The vector q£ , (15E), is, therefore, perpendicular to 

the surface of the ellipse. In this case, BC - L, a - RL, and 

b » RL/ ; hence, 

,v, ._i(—•*-;-—  

Subject to, »«»<' •*! 

(22) 

'JLl%J>       °  . (MC) 

• iw    •• m   x •- -      )•   —••   •j.'Ai^nff 
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As an example, consider one of the lethal volumes of the 

preceding chapter.  For End Game II, equation (20C) holds, and, 

since, 

(0.872) « 0.525 nRjjBCM , 

1 ~-^'« » BC I [4 , o, 4] [•WSf °i  -266] - °-872 ' 3! I   • 
ISI 

An important property of the size of the lethal volume can 

now be stated: 

For all end games where the inequality (20B) or the 

inequality (20C) holds, the size of the lethal volume 

for cuts of a single linear structural member is a maximum 

when the velocity vectors of the target and the missile 

are parallel, (V «V • 0 ), and the axis of both the 
f        « 

target and the missile lia along these vectors (1 i I » 1)# 

This follows directly from equations (21) and (22) since 

and the maximum value of I I    I * 1. 

THE PROBABILITY CONTENT OF THE LETHAL VOLUME 

1. Introduction 

An approach similar to that used to calculate the volume I 7 | 

can also be used to find the probability content of V. That is, 

the probability content of V can be considered to be equal to the 

probability content of an elliptic cylinder plus the probability 

content of an elliptic cone less the probability content of an 

identical cone. Unfortunately, the probability content of the two 

cones are not usually equal; hence, they do not cancel as they did 
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in the calculation of V  .  In general, the probability content 

of V, P , is given by» 

P «= P + P - P 
k    1    8    3 

where, 

P is the probability content of the elliptic cylinder, 

P is the probability content of the cone interior to the 

lethal volume, 

and P is the probability content of the cone exterior to the 
s 

lethal volume. 

2. Background 

Figure 8 shows a skewed elliptic cylinder and a right elliptic 

cone together with a coordinate system (t , u > V ). The coordinate 

system is chosen such that the t axis lies along the axis of the 

cone. The u and y axes are chosen to be parallel to the major and 

minor axes, respectively, of the elliptic base of the cone. In 

addition, the base of the cylinder is assumed to be parallel to 

the u -v plane. The base of the cylinder nearest the origin is 

assumed to be centered at the point t  and the apex of the cone 
o 

nearest the origin is assumed to be located at t  • Also shown 

is the mean (t ,u , y ) of an arbitrary frequency function 

f(t , U , V ). 

Expressions for the probability content of these two 

geometrical figures under the frequency function f(t , u , v ) 

will now be developed. In general the probability content of a 

volume under the frequency function ivt , U , y ;  is given by, 

P - HI f(t', u', y') dt'du'dv' 
Vol 
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Figure  8. COORDINATES FOR  DETERMINING 
KILL PROBABILITY 
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The limits of integration are easier to visualize if the 

origin is transformed to the mean (T , u , v ) » so let 
t - t' - t'  , 

4 — t 
U « U  - U     , 

and v « v* - v   • 
The expression for P then becomes P - III  f(t> u> v) dtdudv   > 

Vol 
since the Jacobian of the transformation is one. 

First consider the cylinder. The axis of tue cylinder is 

formed by the vector 

I « II I [c , c , c ] 

where,€ t c  and € are the direction cosines of L with respect 
X 8        3 

to the It , U , v J coordinate system. The semi-minor and semi- 

major axes of the elliptic cross sections of the cylinder are 

denoted by a and b respectively. The equation of this cross 

section is given by, 

tn~k(t)]a , [v-h(t)la  j. „0 
(23) 

where,       a        b 

k(t) and h(t) are the u and v coordinates, respectively, 

o£ the center of the cross section taken at the point t. 

— i 

By similar triangles it is seen that 

k(o) -£ U' -t ') -S' 
and that,    i      ° 

k(t) - f-1 • k(o) » Jt (t 4 V -%   ) • u 
l i 

Analogously,      *       .        . 
h(t) - ^1 (t • t - to) - v 

i 

Solving equation (23) for v gives, 

v(t, u) - h(t) t ±J&   - [u-k(t)]a 
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The probability content of the cylinder then can be expressed 

as>       U  U  U 
p 11 p 12 p 13 

P - J   J   J   f(t, u, v) dtdudv (2U) 
L   L   L 
11  la  13 

where, 
9 .-/ 

U  -|I|c+t  -t    , 
11        1    o • 

/  1-/ 

11    o * 

Ü a - k(t) 4 a   , 

L 9  - k(t) - a   , 

U  « h(t) • £v
/a8 - [u-k(t)]a   , 

is        a 

and   L  - h(t) - | Vaa - [u-k(t)]2 
13       a 

A similar approach can be used In deriving the probability 

content of the cone. In this case, 

k(t) -k(to - tx) - -u' 

h(t) • n(to - tx)  - -v' 

and are. hence, constants. However, a(t) and b(t), the semi-major 

and semi-minor axes of the elliptic cross sections of the cones, 

vary with t.  If the height of the cone is designated by Y , then 

v   Lt4(t#-Vl 
a " aft) 

or a(t) -i| (t • t' - t ) | . 
Analogously, T x 

b(t) -i| (t'-t ')|. 
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For  the cone,   then 

V(t, u) --v'±|kl V(t)-[«•»'!• 

as 

äTtT \ 
The probability content of the cone, P , then can be expressed 

U  Ü  u 
f 81 p 82 (»23 

P - I       |   f(t, u, v) dtdudv (25) 
8  L   I     "L 

where, 

81   82   83 

81        1 ' 

L 
81 

• t'. .r 
u 

88 
K * a(t) 

\* - - a(t) 

u 
83 

m 
—/ 4 H$l a(t) n/a (t) - [u + u ]   | 

and  L  - _y' . *M ^»(t) . [u • u'j
2  . 

83      a^t; 

3. An Expression for the Probability Content of the Lethal Volume 

The results of the latter derivations, together with the 

results of Chapter II, will now be used to derive an expression 

for the probability content of the lethal volume. 

In Chapter II, the feasibility of generating an orthogonal 

/ t      i 
coordinate system x~, yß, zß with the following properties was 

demonstrated: 

(a) The xD axis was shown to be parallel to the minor 

axis of the cones composing the lethal volume. 

(b) The y  axis was shown to be parallel to the axis of 
B 

this cone and is perpendicular to the ba9e of the cone. 

(c) The Zg axis was shown to be parallel to the major axis 

of this ellipse. 
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A lethal volume is shown in figure 9, together with such a 

coordinate system constructed with its origin at the apex of the 

interior cone. This coordinate system meets all the requirements 

specified for the (t f U , V ) coordinate system. 

h Recal: that the height of the cone was shown to be -t- , that 

the major axis of the base of the cone was shown to be RL, and that 

the minor axis of the base of the cone was shown to be 7- A 

Furthermore, if the vector BC is restricted to be directed in 

the positive y_ direction then the vector PC corresponds to the 

vector L.  This restriction does not limit the applicability of the 

derivation in any way since the choice of points B and C and hence 

direction of the vector BC is completely arbitrary. 

In Chapter III, EC • ] BC| (I      I      I  ), was given relative to 
1*  2*      3 ' 

the (x, y, z)  coordinate system. To be applicable here, BC must be 

transformed to the (x„, yR, zR ) system by equations (16A), (16B), 

and (16C) . The transformed and restricted vector BC will be denoted 

by BC « !BC{ (i#, ^', l' ). Then c , € „ € corresponds to /' i' 
' ! l9   9*   s        i9    a* 3 a* 3* 

and £ respectively. 

Also shown in figure 9, is the location of the mean {jdt9 y' 

«R ) of the frequency function f (x_ , y_ 9  zR ) . As before the 

origin is translated to the mean by letting, 

* " *t " *B'     * 

and v - *B _XB 

ISee equation (17), 0.  2C. 
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The expressions for the probability content, Pi, of the 

cylinder joining the bases of the two cones can now be easily 

obtained. Note that tQ, the nearesc point to the origin of the 

h cylinder is given by the height of the cone -3-. Using equation 

(22), Pj, is given by, 
U  U   Ü 
11 ia  13 

p ~ r   r    r    f(t, u, v) dtdudv 

L  L   L 
li ia  13 

h -. 

where, 

\n " h * k(t)  » 

\»'h(t) -1 -K - c**w? , 
k(t) - ^ (t • ^ - #) - -B'        , (26A) 

a 

i;     _, iL 
h(t) « ^ (t + yB' - T) - Xg'   . (26B) 

a 

The probability content of the cones can be found in a 

similar fashion. For the interior cone, the distance from the 

origin of the ( xR , y_ , 7.« ) system to the apex of the cone, 

t  , Is zero. The probability content of the interior cone, Po, 

Is given by, 

U  Ü   U 
ai 92      as 

and 

pf «r   r    r    f(t, u, v) dtdudv 
L  L   L 
ai aa  a3 

"f   " '•• 
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where, 

„    **> -' 1 

hi m *B       ' 

»„ • ~h' • •<*> 1 

L     - «;' - a(t) 
S3           D 1 

v<*88 7a8 (t) r     —-'i2 

i   .jr'.b<" ./a8ft> r     —i-i7. 
-    u+z 

a(t) - d! yB
# • 11 

and  v't) -£ly£' + tl 

The form developed for the probability content of the 

interior cone is sufficiently general to be used to express the. 

probability content of the exterior cone. For the" exterior cone, 

the distance from the origin of the (x_ ,7^,1» ) system to 

the apex of the cone is given by, 
t - I BC I *9 

The quantities k(t) and h(t) are again constants with, 

k(t)-k(!W|it'-55') -IBU/-^
1  , 

and  h(t) » n( | TSR | Ä ' . x^') •|B^'-^' 

The probability content of the exterior cone, P3, is given 

by' U   U   f 
si    sa    33 

P - ]    J    J   f(tf u, v) dtdudv 

L    L    L 
»*    «    as 

1 j w^paw—ggw 
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usi . (?£)+!BCU'-^'     , 

u    * i HI * ' - zJ + a(t) 33 3 B $ 

L     - ! BCl i ' - 2 ' - a(t)       , 
3 3 • •* 

U
S3 " 'w I 'i' " H + d Va8(t) ' CU+IB' 'ro "• ']2   ' 

Ls3  -|BCU' _5^' _d   ya
8(t) - [u+^'I BC U ']3    , 

a(t) - dlt -C^ • IBM V - SB') I     » 
and     b(t) - § I t -(^ • I BC I ia ' - yg') !       . 

After evaluating the integrals for Plf  P2,  and P3,  the 

probability content of lethal volume P^,  is given by, 

P    - P    + P    - P 
k 1 a 3 

The probability content formulas derived thus far are applicable 

only when Vy or Vz is not zero and when, in addition, the inequality 

(20C) holds. 

The equations for the probability content of the lethal volume 

when both Vy and V2 are zero follow in a analogous fashion. In this 

case, the coordinate system (x, y, z) is equivalent to the (t , u , 

• ) system. If the mean of the frequency function f(x, y, z) is 

(x, y, z), the substitution, 

I t-x-x  , 

u « y - y   , 

and  v - z - z        # 

will translate the origin to the r.ean. 

Recall that in this case* the cones are right circular cones with 

2see equation (13), p. 18 
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V 

heights I TT-1R  •  Since the cones are circular, a(t) equals b(t) 

and in the cylinder a - b = R, . 

Again the vector BC must be restricted before it will 

correspond to the vector L.  If BC is oriented in the direction 

of positive x then BC •* I BCl (t . I  # i ) corresponds to the 
l'      29      3 

vector  L.     BC is  relative  to the   (x,   y,   z)   coordinate  system and 

^y*    ^a and  ^corresponds  to  €   ,   €      and   e respectively.    Equations 
1*3 18        3 

(24) and (25) then can be used for the probability content of the 

lethal volume in this case with, 

E - 15 

V V % " \9   V X3 reSPectiVelv 

t , u , v • x, y, s respectively 

a « b « h 
t  «0 (interior cone) 

t  * IT3C I i (exterior cone) 

4. Evaluation of the Integrals 

A scheme for both hand ev i.uation and computer evaluation 

of the integrals P^, P2, and P3 will now be discussed. The scope 

of this section will be limited to the evaluation of the integrals 

with only the trivariate normal frequency function, 

*/*   \  / 1 \/a   1     ^a a a   or V 

t  n  T 
The integral for the probability content of the cylinder or 

the cones over the trivariate normal distribution f(t, u, v), 

•P— n «• fgr; 
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given above,   can be expressed  as, 
ut U    U 

P * J    J       j      f^t>  u>  v)  dtdudv 

where, 

L   L     L 
12        3 

U   and L   are constants 
l l 

Ua - k(t) • a(t)        , 

(27) 

La - k(t) - a(t)        , 

u* * h(t) + Sry ß~M - [u-k(t)]2     ' 
and      Ls « n(t) - |JU J?(t) - Cu-k(t)]2       . 

To evaluate this integral, first make the normalizing 

transformation, 
t «= t/a 

u * u/c? 

v m v/a 

Equation (27)  becomes, 

Vt*   \*   \* 
P* Cir J       J       J       f(t', u', y#) dtdudv 

L *   L /   L / 
18 3 

where, 
Ü ' - U /a , 
l r  t       * 

Li'-Vat    * 

Ut' - k'(t') + a 

\* - k'(t') - a 

U '.h'(t')** 

k' -k/cr, , 
h' - h/a , 

a « a/a , 
and       b • b /a # 

(t >    , 

&£,/[»V)]a - [u'-k'(t')]*    , 
CO 

a(t') 
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Since this transformation mops ellipses into ellipses and 

straight lines into straight lines, the problem is still to 

evaluate the integral V  over a right elliptic cone and skewed 

elliptic cylinder. 

A computer program suitable for the evaluation of P is 

3 
readily available for the IBM 7090 computer.  This routine 

computes the integral, P, using a Hasting's approximation^ for 

the inner integral then sums by n step by step process. 

The integral P, can be evaluated in terms of tabulated 

functions only if k (t ),h (t ), are constants and a (t) and 

b (t) are equal.  Since a (t ) and b (t )are always different for 

the cones when Vy or Vz is not zero, numerical integration must 

usually be used to evaluate the probability content of the cones. 

With the cylinder, a(t) and b(t) are always constants and when 

either Vy or Vz is not zero, equations (26A) and (26B) show that 

k (t )and h'(t#) are also constants if X ' • 4 # • 0 • The 

corresponding condition for the case when both V and Vz are zero is 

i    m t    m  0* 
When  a#(t')f b'(t'), k'(t') and h (t}are constants then 

^Gittleman, Ruth, Floating Point (n) Variate Probability 
Integral, IBM SHARE ROUTINE 1384, November 2, 1962. 

^Hastings, Cecil, Jr., Approximation for Digital Computers, 
Princeton University Press. 1955, p. 167. 
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the integral > can be written as 

r»« 

P - (^ w .-it' dt 

k +a 
*      !   2 

k'-a'« 

h + —; v'a  - (u -k ) 
a 

.  -4(u +v ) du dv 

•»•' 

/  ' 2 

h  .'a  - (u ~k ) 
a 

or 

P - AOE(a', b', k', h') (28A) 

where, 

AO n(ut') - O(LX ')  , (28B) 

3 

°»0) (^ f -"*' * e (28C) 

and 

nk • a 

E(a', b', k', ft') - ^L 

k'-a' 

/ n — 
[»ft +-jva  - (u -k ) 

a 

a  a 
~J(u «-V )  du dv 

' 71  
b / '   / / , 'xa - -7 7a  - (u -k ) 

0(X) is the integral of normal distribution function and is 

tabulated in numerous books. 

E(a , b 9  k , h ) is the integral of the bivariate normal 
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distribution over an offset ellipse. This function is tabulated 

in at least three plr.ces. 5, 6, 7 The notation was chosen to 

conform to that of Mr. Builte.8 J. H. Cadwell,9 has shown that 

2a V —• i exp -2 [ 
a «-U  b +U 

E(a', b', k', h') «a ~- 

Mr. Cadwell showed t tat the error from usin;; this approximation 

is less than .002 if a is less than 0.5. He also gives 

approximations which can be used for a less than 1.5 and for a 

less than 2.5. However, with comparable accuracy these latter 

approximations are rather cumbersome. 

(29) 

*Rodden, J. J. and G. W. Rosenthal, Tables of the Integral of 
the Elliptical Bivariate Normal Distribution Over Offset Circles. 
Lockheed LMSD - 900619, May 1, 1961. 

"DiDonato, A. R. and M. P. Jarnagin, Integration of the 
General Bivariate Gaussian Distribution Over an Offset Ellipse, 
Naval Weapons Laboratory Report NWL 1710, August 11, 1960. 

^Bullte, A. G., A Building Block Technique for the Statement 
and Solutions of the Problems Involving the Bivariate Normal 
Distribution, Master's Thesis, School of Engineering, Air University, 
August 1962, p. 119, pp. 54-50. 

»Ibid. 

'Cadwell, J. H., "An Approximation to the Integral of the 
Circular Gaussian Distribution Over an Offset Ellipse", Mathematics 
of Computation, January 1964, Volume 18, No. 85, pp. 106-113. 
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In the special case where a * b , the circular coverage 

function, p(a', r), of H. H. Germond Is applicable.10  In this 

case, 
Eta', b', k', h') « E(a', a', k', h') » p(a , r) 

where, f % 2 
r  - h  4 k    • 

An extensive tabulation of the a  function where, 
Q(a', r) - 1 - p(a', r) 

exists and offers the best source of the values of the circular 

coverage function. 

Roger Snow showed that the circular coverage function, 

p(a',r)can also be used when a / b if k « h«0.12 In this 

•#'«**<*%   t  '   ^'\       ,a +b a -b *  J (a-b  a +b) I E(a , b , 0, 0) - q(a , b ) « p(—g—>—-j—) - Pj_—5— , —5—> f 

If both a#= b' and k# » h' • 0, then E(a', a'# 0, 0)« l-€^
a 

i.e., E(a#, a', 0,0) is the integral of the well-known Rayleigh 

distribution. In this case the tables of e  can be used to 

evaluate the integral.   If the accuracy requirements are not 

(30) 

^Germond, H. H., The Circular Coverage Function, Rand 
Corporation RM 330, January 26, 1950. 

l*Marcum, J. I., Tables of Q Functions, Rand Corporation 
RM 339, January 1950. 

12Snow, Roger, Some Characteristics of the Elliptic Gaussian 
Distribution. Rand Corptration RM 2765-PR, September 196i. 

13flational Bureau of Standards, Tables of the Exponential 
Function ex, U. S» Government Printing Office. 1947. 
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to be  stringent,   special  graph paper  can be used  to evaluate 

E(a', a', 0, Cfl.14 

If k (t )and h (t) or a (t ) and b (t )are not constants the 

integral can be evaluated by the following procedure: 

(1) For a given t « t  evaluate k (t ) and h (t ) 

or a (t ) and b (t ). 

(2) Find E [a'(t '), b'(t '), k', h' ] from one of the 

references given or from equation (29). 

(3) From the normal probability tables find 

(4) From the product, 

f(tf ') E(af ', b ', k ', h ') 

This determines a point of the frequency function,p(t ). 

(5) Repeating this procedure, with t varying between the 

lower limit L  and upper limit U   , determines the 
1 1 

entire frequency function. 

(6) Numerical integration of this frequency function yields 

the probability content P. 

5. Example 

As an example of the above procedure the probability content 

of the lethal volume, will now be computed for a special case of 

End Game I. In End Game I if t •!, and I   » &   »0, then an 
l       a   a 

antiparallel intercept exists. In this case a • b » R^ and the 

cylinder is right circular.  If the mean of the distribution is 

assumed to be located at the base of the interior cone, (see figure 

10); then, k'- h-0, and equations (28A) and (30) hold. 

**Burke, T. Finley, New Graph Paper for Circular Normal 
Distributions. Rand Corporation RM 3292-PR, September 1962. " 
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To fix the dimensions of the lethal volume, let ' BC* « Rt and 

tA- • i. To iiix the distribution, let s-a-cr^R-, . 
^ » J      '      V3 

for the cylinder, then U  «3.0 and L « 0.0. Equations 
li li 

(28B) and (28C) then yield, 

AO 1  j 

(*0* Jo 

3.0   t/ 
e'7 dt- 0.1*987 

From equation (30) is obtained 

E • 1 - e"*^ - 0.98889 
Hence, 

p » An E « 0.U9U0 

Next consider the problem of finding P3. From figure 10 

the cone exterior to the volume is seen to be oriented with its 

apex location at t • +1.5 * t . Since V /VD « |. U  « L 
*        ai      « *   * 21       8i 

• (£) Vat ' 3*°* 
Following the procedure outlined in the last section, Table 2 

cen now be generated. 

1.5 

1.6 

1.7 

Table 2. Calculation of P      a 

1 '/^ /%a  1 A «* 

*(t ) 

0 

0.2 

O.li 

1 - e 

0 

.01980 

.07688 

.12952 

.11092 

.091405 

0 

•00220 

.00723 

3.0 3.0 .98887 .00Ui3 

«*r.P,(t')^-^V)3^.e-H'j   , 

.00U38 
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Next p  (t ; is  plotted in  figure  11.     The area u.ider  this 
3 

curve is estimated using one of numerous techniques available 

yielding, r
3#0 

P -    p (t ) dt • 0.0188 
3  1.5 3 

?2  c*1 be found by a similar procedure. From figur» 10 the 

cone interior to the volune is seen to have its base nearest the 

mean of t^Ä distribution. For the interior cone the function 

a (t )must be a maximum, (3), at t »0 -ind a minimum, (0), 

at t "-1.5- ^e  function p (t')is plotted in figure 12. Then 
• 3 

P   -• j Pa(t
#) dt - 0,285 

-1.5 
Now the probability content of the volume is given by 

P-P+P-P« 0.7602 
kits 
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CHAPTER A 

PARAKüTEP VARIATION STUDIES 

Using the results of Chapter 3, the variation in the size 

and the probability content of the lethal volume with the model 

parameters can be investigated. In a typical investigation all 

except one of the model inputs are held constant and the variation 

In the measures of effectiveness is expressed as a function of the 

remaining parameters. The values assigned to the inputs held 

constant are then changed &nd the variation in the measures of 

effectiveness is again expressed as a function the remaining 

parameter. This process is repeated until the change in the 

measure of effectiveness can be reliably predicted for any set 

of values assigned to the inputs held constant. 

Another way in which the variation in the measures of 

effectiveness is sometimes investigated is the tradeoff study. 

For the tradeoff study all except two of the inputs are held 

constant. Combinations of these two inputs are then found such 

that the measures of effectiveness remain constant. Here, a 

popular example is a set of iao-kill probability curves. Having 

auch curves the analyst can, if he has the cost data, select the 

combination of the two variables which give a satisfactorily high 

kill probability for the least cost. 

The construction of iso-kill probability curves in this 

fashion may be extremely difficult unless the probability of 

kill function can be solved explicitly for the variables of 

interest. Since the kill probability function cannot usually be 
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solved explicitly, an iterative process must be used. This can 

be quite expensive if high accuracy is desired. 

One way this problem can be surmounted is to compute the 

probability of kill as a function of the ratio of two of the model 

inputs. If the probability of kill can be computed in this fashion, 

then the tradeoffs between two of the inputs can still be noted and 

the calculations can still be easily performed. 

A study in which the variation of kill probability is expressed 

as a function of the ratio of the input variables will not be 

illustrated. To obtain the ratios, the trivariate normal frequency 

function f(t, u, v) is restricted to the spherical normal frequency 

function; i.e., 

t    i    • 
The probability content of the lethal volume can now be 

computed as a function of the ratio of the maximum opening radius 

of the rod» RL, to  or as a function of the ratio of the effective 

length of the member ! BC t, to 9, 

Figure 13 shows the location of the mean of the frequency 

function taken, the values assigned for the other Inputs, and the 

range of the ratios that were investigated. 

The results of this investigation are shown in figures 14 and 

15. Figure 14 shows the size of the lethal volume normalized with 

respect to o as a function of the ratio R*/9* Figure 15 shows 

the variation in the probability content of the lethal volume 

for the 8tune inputs. 

The lethal volume model can be similarly used to determine 

the variation in kill probability with any of the parameters which 
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•re inputs to the model. Thfe number of parameters of the model 

can be increased by deriving the relationship between the inputs 

and other end game variables. For example, the standard deviation 

of frequency distribution can be divided into guidance and timing 

errors. Parameter variation studies can then be conducted with 

either the guidance or timing errors. A further division such 

as this increases the resolution of the model. Table 3 lists 

some of the model inputs together with ways these inputs might 

be divided to increase the number of parameter variation studies 

possible with the model. 

Table 3 
Division of the Model Inputs 

1. Standard deviation of the frequency distribution 

a. Guidance errors 

b. Timing errors 

c. Target maneuvers 

2. Lethal radius of the rod 

a. Warhead weight 

b. Warhead size and shape 

3. Average rod velocity 

a. Warhead weight 

b. Warhead size and shape 

c. Engagement altitude 

4. Effective length of target 

a. Target shape 

b. Target hardness 

c. Closing velocity 
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5. Velocity vector of the missile 

a. Range to intercept 

b. Angle between the missile's axis and its velocity vector 



4H 

CHAPTER 5 

MODEL IMPROVEMENTS 

INTRODUCTION 

In this final section, a means of improving the target and 

warhead models will be presented.  A model improvement is defined 

as a more realistic mathematical description of the actual 

performance of the hardware during intercept. 

The need for model improvements depends on the particular 

variables to be Investigated, the purpose of the study, the accuracy 

required, and the reliability of the inputs to the model.  For 

example, if the object of a study is to accurately estimate the 

kill probability of a system, then a more realistic description 

of the target and warhead would be desirable. On the other hand, 

if the object of the study is to roughly estimate the gain in 

kill probability obtained by improving the guidance accuracy, then 

the current model will suffice. 

TARGET MODEL IMPROVEMENTS 

The lethal volume associated with cuts of a structural member 

has been derived. The lethal volume associated with cuts of a 

stick aircraft can now be determined by taking the union of the 

lethal volume associated with each of the structural members of 

an aircraft.  One of the ways that  this may be accomplished is 

given below. 

Consider the aircraft sketched in figure 16. If the point 

where the wings are attached to the fuselage is selected as the 

origin, then the target can be descilbed with four vectors.  One 
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vector, N, has a magnitude equal to the length fron 0 to N, and is 

directed from 0 to N. Similarly, vectors from T, V^, and W2 are 

defined as the vectors from 0 to T, W^, and W2 respectively. 

The total lethal volume Vj,, associated with cuts of all 

lour vectors is then given by, V, » 7« U V- u V.^ u V« 
x     9 

Figure 17 gives the cross-section of VL in the xy plane for 

ah antiparallel intercept (End Game I with I   • S.) - This approach 

ignores the cumulative effects which might occur when more than 

one structural member is hit; i.e., when two members are both 

subjected to a sub-lethal effect, their cumulative effect may well 

be lethal to the aircraft. The changes of such an occurrence are 

remote with a continuous rod warhead. 

The major difficulty that arises in making this model improve- 

ment is in expressing the limits for the integral, 

f(t, u, v) dtuddv   • •.-{fi 
L 

Ideally the Limits of integration could be expressed as functions 

of the wing length | W"! » the wing angle a>, and the roll of the 

aircraft. Such a derivation would be an extremely difficult but 

certainly a feasible undertaking. 

To better estimate the desirability of undertaking the target 

model improvement, an estimate of the change in kill probability 

due to adding the wings to the target is needed. If the vector 

NT is considered to represent the segment 1 BC* for the single 

linear structural member model already developed, then the 

consequences of adding the vectors W and TT*to the model can 
1 a 

be considered. 
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From equation (31) it is seen that since 

the probability content with the stick aircraft model will in 

general, be greater than that obtained by using the single 

member model. In figure 17, the cross section of V. - (V,, U V,, ) 
l   a 

has been shaded. The probability content of VL "^W U VW ^ 
l   a 

represents the Increase in probability due to the addition of the 

vings. For a particular end game the probability content of 

Y. - (Vy  U Vy ) can be bounded in numerous ways, e.g., using 
i    a 

Gaussian equal cell probability paper. From this increase in 

probability the analyst can judge the importance of the target 

«odd improvement for his particular application. 

WARHEAD MODEL IMPROVEMENTS 

One of the principal assumptions made before the expressions 

for the size and probability content of the lethal volume are 

derived in Section D, was that the rod travels with a constant 

velocity. In the sequel, a means of accounting for a variable 

rod velocity and the effects of this model improvement will be 

discussed. 

If an object is ejected into the atmosphere with high 

initial velocity, its velocity will decay rapidly as a function 

of the distance traveled. This velocity will approximate the 

equation, rp 
T(R) - Vo *-m (32) 

where, 

V(R) is velocity of the rod at the distance R, 

V(o) is the ejection velocity of the rod, 

and   K is the decay parameter. 
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The parameter K is a function of the drag encountered; hence, 

K varies with the ballistics of the rod and with the air density. 

The parameter K, then will not oily change with the characteristics 

of the rod, but will also change with the altitude of the burst. 

The time required for the rod to travel a distance R is 

given by» R 

The average velocity of the rod to a distance R, the parameter 

VR used in Chapter II, is given by, 

w   R  K R V(0) 

When V„ » V, * 0, equation (13) gives 

K 8   T8 m 8  T 8     r8 

S(B).!5-*^-  
H 

Where S(B) » 0 is the equation of the surface associated with cuts 

8 

of the point B. 

Substituting for VR gives, 

i'(B).2L + !lL—3 
R8   R8 • 8 

Following a procedure similar to that unsed in Chapter 3, 

the lethal volume can be formed by connecting the surface defined 

by s'(B) "0 to a similar surface defined by S (C)-0 with 

parallel line segments. Then the expressions for the size and 

probability content of the lethal volume can be developed following 
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the techniques of Chapter A. Again the major difficulty would be 

In expressing the limits of the integration to obtain the 

probability content. 

Note that since K is greater than zero the surface defined 

S (B)«0 contains a larger volume than the surface defined by 

S(B) » 0*  (See figure 18). Again an estimate of the change in 

kill probability due to the model improvement is desired. 

If p£ is the probability content of the surface defined by 

S(B)« 0 (obtained with VR » VR ) and PQ is the probability content 

of the surface defined by S (B) » 0 (using equation (32) for VR) 

then the problem is to estimate 

pc' - pc     • 
Let the axis of the surface defined by S (B) * 0 be divided 

into n intervals and let j = 1, 2, -- n, be the coordinate along 

the axis at the end of the nth interval. Let R denote the distance 
J 

from the axis to the surface defined by S (B) at the point j. 

Let the probability content of the cones of radius R obtained 

with VR - VR be Pj. Let Rj be the distance from the jth 

coordinate to the cone S(B) - 0 and let Pj be the probability 

content of this cone. 

i 

§    a 
Note that P_ • P • Pc# Then, 

P ' - Pr - 11m  E (P ' - P ) (33) 

taking a small n will yield the desired approximation. 

A similar procedure will yield P , P  and P  corresponding 

to the probability content of the cones and the cylinder. The same 

procedure can also be used when either Vv and Vz are not both 

zero. The analyst can again judge whether or not this model 
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improvement is worthwhile. 

Incidentally, equation (33) offers an alternate means of 

obtaining the probability content with variable rod velocity. 

Using equation (33) to obtain a high decree of accuracy would 

be rather expensive, however. 
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